Computer aided methods for designing self-propelled road heading machines
Dudek M., Świtoński E., Winkler T., Prostański D., Wyrobek E., Tokarczyk J., Bojara S.
Summary:
Testing methodology and a method for selection self-propelled mining machines to the specified mining and geological conditions, developed and implemented in the KOMAG Centre, has been presented in the work. The aim of this methodology was to develop algorithms of computer procedures for roadheading machine models simulation to specify longitudinal and transverse machine stability, range of booms operation, area of machine collision with roof support and specifying the operator’s work stand ergonomy and also his field of vision.
On the basis of developed algorithms, a software for simulation of mining machines operation was created and it was found that due to the modelling tests at the stage of fore-designing process, the designing process was significantly shortened and costs of the prototype manufacture and its testing were reduced. A range of the work included as follows: making computer model of selected mining machines (roadheader, loader, bolting car, drilling manipulator, bolting boom), carrying out computer simulations of machine systems, description of machine booms movement trajectory, checking the machine operational range and collisions of their booms with a selected type and cross-section of roof support, with a machine itself or other machines operating in roadway drivage and setting the roof support, determination of standard stability coefficients of tested machine geometrical form in different work and load conditions, determination of operator’s field of vision and checking his work stand ergonomy.
A developed test methodology as well as software algorithms have a universal character. For example they can be used in testing longwall systems or other heavy-duty machines.